Workshop Lower Clover Valley Sewer Trunk Replacement

South Placer Municipal Utility District

Eric Nielsen, District Engineer

August 1, 2019

Approach

Criteria

Overview

Lower Clover Valley (LCV) Sewer Trunk Replacement Project

Costs

LCV Sewer Trunk CIP recommended in 2015 SECAP

Assessmen

- 2015 SECAP results: 18" trunk under capacity, surcharges in Near-Term PWWF design storm conditions. Needs 24" capacity upgrade to meet Long-Term (Lower Bound) conditions of 9.6 mgd.
- High Risk Facility assessment: high risk assets along Lower Clover Valley (exposed pipe crossings across Antelope Creek and exposure to undermining)
- Poor accessibility, operation and maintenance due to "backyard" easements and proximity to overlying structures

Preferred

Alternative

Lower Clover Valley Trunk Sewer Replacement – Preliminary Design Report Workshop

Constraints

Development

Existing Issues Along 18" LCV Trunk

Existing Issues Along 18" LCV Trunk

Existing Issues Along 18" LCV Trunk

Project Approach

Geotechnical Constraints

- Majority of project area is Holocene Alluvium or Valley Springs Formation
- Preliminary site geology research does not suggest presence of hard rock formations but boulders could be present
 - Foothill Trunk and Loomis Diversion Line are located in the Penryn Pluton (granitic) and Rocklin Pluton (granitic)
 - Hard rock excavation risk increases with depth
- Construction in soft sands near creek embankments might require mitigation.
 Trench stabilization & trench cutoff walls may be necessary for long portions
- Increased scour potential with proximity to creek (fluvial morphology; "oxbow" effect). Alignments located directly in an embankment should use WSP and may require embankment armoring (rip-rap, etc.)
- High GW relative to creek; moderate dewatering likely required on 2/3rd of the alignments
- Care must be taken when installing manholes in fill-slopes due to slip-planes that could occur between native soils and fill from housing developments
- High shrink-swell potential and high surface water runoff potential near creek; mitigate with trench stabilization, CLSM backfill, and/or WSP pipe

Environmental Constraints

- Antelope Creek (perennial) runs through valley but is not listed as impaired water body
- Extensive valley foothill riparian habitat and annual grassland habitat present along with wetlands
- 100 YR floodplain is expansive
- Close proximity to residential homes mean construction noise will likely need to be mitigated
- Area is within USACE, RWQCB, and CDFW jurisdiction.
- Oak Tree removal governed by Rocklin (City)
- California Species of Special Concern (CDFW) present
- Raptors and bats may be present in trees
- Elderberry shrubs were not observed, but may be present
- Western pond turtle may be present
- Steelhead and Chinook Salmon may be present
- No known cultural sites identified within study limits nor observed during field survey along with UAIC tribal representative. Project area has low sensitivity for cultural resources.
- Moderate potential of discovering paleontological (fossils) resources

Potential Permits

- 404 USACE
- 401 CDFW
- 1602 RWQCB
- Air PCAQB
- Tree Removal: Rocklin
- General Permit SWPPP

Channel (Antelope Creek) Hydraulics

- It is assumed that given all alternatives require some modification of an existing creek crossing, or "trading" for a new crossing and removal of others, then the District's position is defensible and a new elevated/exposed creek crossing would be approved.
- An elevated or exposed pipeline may negatively impact channel hydraulics or exacerbate the 100yr floodplain. Rocklin and/or USACE may request a detailed surface flow hydraulic analysis (open-channel flow modeling).

Alignment Alternatives Development and Assessment Process

- Five preliminary working alignment alternatives were developed:
 - Replace in Place Existing LCV Trunk
 - Replace in Place & Parallel Replacement Creek Alignment
 - Parallel Replacement Shannon Bay / Willowynd
 - Parallel Replacement Whitney / Rainier
 - Parallel Replacement Springview
 - Parallel Replacement Creek / Willowynd Hybrid

 Working Alignment Alternative	Length	General Description						
Replace-in-Place Existing Trunk	3878	Capacity upgrade only						
Replace-in-Place/Parallel Replacement along Creek	3490	Capacity + O&M upgrades						
Parallel Replacement – Shannon Bay/Willowynd	4531	Capacity + O&M + Creek Risk Reduction Upgrades						
Parallel Replacement – Whitney/Rainier	5231	Capacity + O&M + Creek Risk Reduction Upgrades						
Parallel Replacement - Springview	4471	Capacity + O&M + Creek Risk Reduction Upgrades						
 See Figure 5 for Alternative 1-2: Parallel Replacement Creek-Willowynd Hybrid (4000 LF)								

Alignment Alternatives Development and Assessment Process

- Five preliminary alignment alternatives were developed:
 - Replace in Place Existing LCV Trunk *****
 - Replace in Place & Parallel Replacement Creek Alignment V
 - Parallel Replacement Shannon Bay / Willowynd
 - Parallel Replacement Whitney / Rainier
 - Parallel Replacement Springview *****
 - Parallel Replacement Creek / Willowynd Hybrid V

Final Alignment Alternatives

- Three alternatives were further assessed:
 - Alt 1: Replace in Place & Parallel Replacement Creek Alignment
 - Alt 2: Parallel Replacement Shannon Bay / Willowynd
 - Alt 1-2: Parallel Replacement Creek / Willowynd Hybrid
 - Alt 3: Parallel Replacement Whitney / Rainier

Alignment Alternative Goals and Risks

• The various working alignment alternatives are not functionally equivalent as they meet different goals and offer different risks. These are summarized in the following table.

Alt 1	Alt 2	Alt 1-2	Alt 3	Goal/Risk Item
+	+	+	+	Provide new capacity & trunk asset life
-	+	-	0	Eliminate trunk exposed crossings (high risk & consequence)
-	-	-	+	Eliminate main-line exposed crossings
-	+	0	+	Improve O&M accessibility
-	+	-	0	Reduce exposure to 100-yr floodplain and USACE permitting
-	+	0	+	Eliminate creek scour potential to trunk
+	-	0	-	Public impact
+	-	0	-	Reduce hard rock excavation risk
0	-	-	+	Right-of-Way procurement
-	0	-	0	Reduce environmental permitting & schedule risk

Alignment Alternative Cost Comparison

Segment	Segment Length (ft)	Cons	struction Subtotal	Co	Total onstruction Cost	Total Indirect Construction Cost	То	tal Segment Cost	Cost [\$ / LF]
Alt 1: Parallel Creek Option	3500	\$	1,745,200	\$	2,304,000	\$ 179,000	\$	2,483,000	\$ 709
Alt 2: Shannon Bay / Willowynd	4550	\$	3,170,600	\$	4,186,000	\$ 172,000	\$	4,358,000	\$ 958
Alt 1-2: Creek / Willowynd Hybrid	4000	\$	2,356,000	\$	3,110,000	\$ 182,000	\$	3,292,000	\$ 823
Alt 3: Whitney / Rainier	5174	\$	4,055,500	\$	5,353,000	\$ 125,000	\$	5 ,478,00 0	\$ 1,059

*Includes 10% design contingency and 20% construction contingency

*Cost per linear foot is the total segment cost divided by the length of replacement trunk length; note that there are additional linear improvements (CIPP lining, abandonment, etc.) that is not reflected in the length total

